Challenges in hydrogen storage
نویسندگان
چکیده
منابع مشابه
Hydrogen storage in porous materials, current status and future challenges
Hydrogen storage in porous materials gained considerable interest, since in the past 15 years many new coordination polymers or framework materials have been synthesized, which show a permanent ultra-high porosity and an extremely large specific surface area [1-3]. Different classes of these novel highly porous structures, e.g., metal-organic frameworks (MOFs), zeolitic imidazolate frameworks (...
متن کاملHydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical
In this paper, the electrochemical hydrogen storage in nanocomposite materials was studied. Multi-Walled Carbon Nanotubes (MWCNTs) electrode was prepared by mixing with special composite. The optimum ratio of MWCNTs was estimated 30-70% (w/w) in the composite material. MWCNTs were synthesized by Chemical vapor deposition (CVD). The nanocomposite was homogenized by microwave. Cyclic voltammetry ...
متن کاملHydrogen storage in carbon nanotubes with Ni nanoparticles by electrochemical
In this paper, the electrochemical hydrogen storage in nanocomposite materials was studied. Multi-Walled Carbon Nanotubes (MWCNTs) electrode was prepared by mixing with special composite. The optimum ratio of MWCNTs was estimated 30-70% (w/w) in the composite material. MWCNTs were synthesized by Chemical vapor deposition (CVD). The nanocomposite was homogenized by microwave. Cyclic voltammetry ...
متن کاملHydrogen storage in molecular compounds.
At low temperature (T) and high pressure (P), gas molecules can be held in ice cages to form crystalline molecular compounds that may have application for energy storage. We synthesized a hydrogen clathrate hydrate, H(2)(H(2)O)(2), that holds 50 g/liter hydrogen by volume or 5.3 wt %. The clathrate, synthesized at 200-300 MPa and 240-249 K, can be preserved to ambient P at 77 K. The stored hydr...
متن کاملHydrogen Production and Storage
■ This paper offers an overview of the technologies for hydrogen production. The technologies discussed are reforming of natural gas; gasification of coal and biomass; and the splitting of water by water-electrolysis, photo-electrolysis, photo-biological production and hightemperature decomposition. For all hydrogen production processes, there is a need for significant improvement in plant effi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The European Physical Journal Special Topics
سال: 2009
ISSN: 1951-6355,1951-6401
DOI: 10.1140/epjst/e2009-01155-x